Para que serve um gráfico em Física?
O gráfico serve para visualizar o comportamento das grandezas físicas envolvidas de uma maneira fácil e rápida.
Através de um gráfico podemos verificar como varia uma grandeza (por exemplo, espaço) em função de outra (por exemplo, tempo).
Vamos mostrar como construir e interpretar o gráfico espaço em função do tempo como exemplo.
Sistema de Eixos Cartesianos Ortogonais
Para construir um gráfico, utiliza-se um sistema de eixos cartesianos ortogonais que são dois eixos perpendiculares entre si, sendo o ponto de intersecção denominado origem.
Os valores das grandezas envolvidas são colocados utilizando uma escala adequada para cada eixo.
O eixo na horizontal (por convenção) é denominado eixo das abcissas e nele são colocadas os valores da variável independente (por exemplo, tempo).
O eixo na vertical é denominado eixo das ordenadas e nele são colocados os valores da variável dependente (por exemplo, espaço).
Localização de um ponto no plano cartesiano
O par de coordenadas (t,S) localiza a posição do ponto no plano cartesiano definido pelos eixos cartesianos. Para tal traça-se uma perpendicular do ponto ao eixo das abcissas e outra perpendicular ao eixo das ordenadas, determinando, respectivamente, a abcissa e a ordenada do ponto (fig. 1).
Figura 1 - Localizando um ponto no plano cartesiano
Construção de gráficos
Para construir qualquer gráfico envolvendo grandezas físicas, deve-se observar as seguintes regras:
- Coloque título e legenda.
- Escolha escalas adequadas para colocar os valores nos eixos.
- Coloque, de forma clara, as grandezas a serem representadas nos eixos com as suas respectivas unidades.
- Coloque os valores das grandezas apenas com os números necessários à leitura; não coloque valores especiais.
- Quando houver diversas séries de medidas, é conveniente distingüi-las com diferentes símbolos (, , e outros).
Exemplo 1 - Construção de gráficos
Construir um gráfico de S = f(t), espaço em função do tempo, dada a tabela abaixo.
S (m) | t (s) |
0 | 0 |
5 | 1 |
10 | 2 |
15 | 3 |
20 | 4 |
25 | 5 |
- 1 cm - 5 m para a variável S
- 1 cm - 1 s para a variável t
Figura 2 - Gráfico espaço (S) versus tempo (t)
Determinação da inclinação da reta
Observe que o gráfico S versus t da fig. 2 é uma reta passando pela origem, indicando que o espaço é uma função do 1o. grau do tempo. A inclinação da reta é dada pelo cociente entre a diferença das ordenadas e a diferença das abcissas.
Inclinação da reta = (Sfinal - S inicial ) / ( tfinal - tinicial) |
No exemplo dado, escolhendo dois pontos quaisquer sobre a reta (fig. 2), A e B, para calcular a inclinação da reta:
Inclinação da reta = ( SB - SA)/(tB - tA) = (15 - 5) m / (3 - 1) s = (10 m) / (2 s) = 5 m/s
O valor encontrado é o da velocidade, e podemos concluir que:
A velocidade de um móvel pode ser determinada a partir do gráfico S versus t (quando este for uma reta), pela inclinação da reta.
Quanto mais inclinada a reta estiver em relação ao eixo das abcissas, para uma mesma escala, maior será a velocidade e vice-versa.
Vimos o exemplo de um gráfico de uma função do 1o grau que é uma reta.
Podemos obter diferentes tipos de gráficos tais como: parábola, hipérbole, e outros, dependendo da função matemática envolvida.
Fonte: http://educar.sc.usp.br/fisica/graficos.html
Nenhum comentário:
Postar um comentário